Discretization and numerical schemes for stationary kinetic model equations
نویسنده
چکیده
There are still many open questions concerning the relationship between (steady) kinetic equations, random particle games designed for these equations, and transitions, e.g. to uid dynamics and turbulence phenomena. The paper presents some rst steps into the derivation of models which on one hand may be used for the design of e cient numerical schemes for steady gas kinetics, and on the other hand allow to study the interplay between particle schemes and physical phenomena.
منابع مشابه
Implicit-Explicit Schemes for BGK Kinetic Equations
In this work a new class of numerical methods for the BGK model of kinetic equations is presented. In principle, schemes of any order of accuracy in both space and time can be constructed with this technique. The methods proposed are based on an explicit-implicit time discretization. In particular the convective terms are treated explicitly, while the source terms are implicit. In this fashion ...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملDiscontinuous Galerkin method for Navier-Stokes equations using kinetic flux vector splitting
Kinetic schemes for compressible flow of gases are constructed by exploiting the connection between Boltzmann equation and the Navier-Stokes equations. This connection allows us to construct a flux splitting for the NavierStokes equations based on the direction of molecular motion from which a numerical flux can be obtained. The naive use of such a numerical flux function in a discontinuous Gal...
متن کاملAnalysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling
In this paper, some theoretical aspects will be addressed for the asymptotic preserving DG-IMEX schemes recently proposed in [10] for kinetic transport equations under a diffusive scaling. We will focus on the methods that are based on discontinuous Galerkin (DG) spatial discretizations with the P k polynomial space and a first order IMEX temporal discretization, and apply them to two linear mo...
متن کاملFormulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes
This paper follows up on the author’s recent paper “The Construction of Discretely Conservative Finite Volume Schemes that also Globally Conserve Energy or Enthalpy”. In the case of the gas dynamics equations the previous formulation leads to an entropy preserving (EP) scheme. It is shown in the present paper that it is also possible to construct the flux of a conservative finite volume scheme ...
متن کامل